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Direct signal recovery from threshold crossings

May Lim and Caesar Saloma*
National Institute of Physics, University of the Philippines, Diliman 1101, Quezon City, Philippines

~Received 12 September 1997; revised manuscript received 4 May 1998!

We present a method for directly obtaining the 2M equally sampled amplitude values of the analog input
signal s(t) from the 2M locations$t i% where it intersects with a reference signalr (t)5A cos(2pfrt). Until
now, high-accuracy signal recovery in sinusoid-crossing sampling had been achieved only indirectly using
spectral methods. The recovery requirements are~1! us(t)u,A and ~2! W<2 f r whereW is the bandwidth of
s(t). The recovery method is evaluated as a function of the accuracy in which the crossings are located, and
the sampling periodT52MD, whereD51/2 f r . Its performance is also compared with other direct interpo-
lation schemes.@S1063-651X~98!11610-0#

PACS number~s!: 07.05.Kf, 02.60.Gf
n

od

in

ple
e

in

-
a

lu
an
ls

n
i

to
p
ro

i

le
u
a

ed

del
o a

os-
in

-

d-
in-
-
nd
xi-
-

s
s
s-

of

m,

g
t
m-AX
I. INTRODUCTION

Previous schemes for accurately recovering a ba
limited signals(t) from its sinusoid-crossing~SC! locations
$t i% have been done only indirectly using spectral meth
@1,2#. The Fourier components$c(m)% are first calculated
directly from $t i% where i 51,2, . . . ,2M , and m52M ,
2M11, . . . ,M . Equally sampled amplitude values$s(k)%
of s(t) are then recovered by inverse Fourier transform
$c(m)%, wherek5(2i 21)(D/2) is the midpoint of thei th
sampling intervalD i .

Threshold sampling is attractive because it can be im
mented with a single-comparator circuit, which in essenc
simply a one-bit analog-to-digital~AD! converter with only
two (21) possible output states—the high and low states@3#.
The main challenge in threshold sampling is in recover
the correct analytic values ofs(t) from the locations$t i% of
its intersections with the reference signalr (t).

This paper demonstrates a method for calculating$s(k)%
directly from $t i%. This capability is important in signal pro
cessing because many integral and differential equations
solved numerically using equally sampled sets of data va
@4#. The recovery method is suitable to signals with no me
ingful Fourier transforms~e.g., noise and stochastic signa
@5#! where the spectral-based method is inapplicable.

Direct signal recovery is also relevant in our quest to u
derstand the nature of information coding and decoding
biological systems which can utilize threshold sampling
encode an external stimulus. The time variations in the in
stimulus value are encoded either as changes in the neu
firing rate ~amplitude-to-frequency conversion! or as varia-
tions in the delay time that an action potential generates w
respect to some reference time~temporal coding!
@6–11#. In both coding schemes, there has been no c
experimental evidence that the threshold representation m
first pass through Fourier domain decomposition before
amplitude representation of the input stimulus is generat
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Hopfield@8# has used a sinusoid reference signal to mo
the delay in the firing of an action potential in response t
particular input stimulus value~phase coding!. Experimental
evidence has been found regarding the existence of such
cillatory reference patterns in the hippocampal place cells
rats @12# and electric fish@13#.

The ability to recover accurately thes(t) value at any
time t within the sampling periodT, from its data represen
tation of unequally sampleds(t) values, is also important in
geology, population biology, and ecosystem science~e.g., in
earthquake monitoring@14#, and population and disease co
ing @15#!, where amplitude measurements at equal time
tervals are difficult to implement. Although other direct in
terpolation schemes, such as polynomial curve-fitting a
cubic-spline interpolation, may also be applied to appro
mate$s(k)% from $r (t i)%, the results may be highly inaccu
rate depending on the behavior ofs(t).

II. THEORY

A. Sinusoid-crossing sampling

The SC locations$t i% are solutions tos(t)2r (t)50,
wherer (t)5A cos(2pfrt). The set$t i% contains complete in-
formation abouts(t) provided that it is obtained using@16#:
~1! A.us(t)u for all t values, and~2! f r>W/2, which is the
highest frequency ofs(t). In such conditions, an SC exist
within each intervalD51/(2 f r), and SC sampling satisfie
the Nyquist sampling criterion for band-limited continuou
time signals with highest frequencyW/2 ~signal bandwidth is
denoted byW!.

We have previously shown that the Fourier spectrum
s(t) can be derived accurately from$t i% for the practical case
where the number 2M of t i is large@2#. When 2M is large
(2M.32), the composite signal@s(t)2r (t)# cannot be re-
constructed simply as a product series of its 2M roots, be-
cause of the ill effects of the rounding-off errors@17#.
Equally sampled amplitude values$s(k)% of s(t) may be
obtained by inverse transforming the Fourier spectru
wherek5(2i 21)D/2 @1#.

In this work, we show a method for accurately derivin
$s(k)% directly from $t i% without the need to calculate firs
for the Fourier spectrum. It makes use of the Nyquist sa
pling theorem and the ideal interpolation formula@18,19#.
:
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From $t i% one can obtain a set of nonuniformly sampl
amplitude representation ofs(t) given by $s(t i)%5$r (t i)%.
The $r (t i)% contains one sampled value ofs(t) within each
D, because an SC exists within eachD of the sampling pe-
riod T52MD.

B. The ideal interpolation formula

The Nyquist sampling theorem states that@18,19# any
band-limited continuous functions(t) with highest fre-
quencyW/2, can be uniquely recovered from$s(k)% if it is
obtained using a sampling intervalD<1/W.

The recovery is achieved using the ideal interpolation f
mula @19#, which permits the calculation of the amplitude
s(t) at any arbitrary timet ~within T!, from $s(k)%:

s~ t !5D (
n52`

`

sS ~2n21!D

2 D sin$2p f c@ t2~2n21!D/2#%

p@ t2~2n21!D/2#
.

~1!

Equation~1! yields an exact solution fors(t) if and only if
~1! an infinite number ofs(k) terms are used in the expan
sion, and~2! no quantization errors are found in$s(k)%.

For our case, we have a data set$s(t i)%5$r (t i)%, repre-
senting known values ofs(t) at locations$t i% where s(t)
5r (t). The$r (t i)% contains a representative value ofs(t) in
each of theD’s of the sampling period, which implies tha
$r (t i)% contains complete information abouts(t) that could
be used to solve for$s(k)%.

The inverse problem of solving for$s(k)% from $r (t i)%
via Eq. ~1! is well posed because the number of unknow
and input data points are equal—for every unknowns(k)
value in a given intervalD i , there is a corresponding know
value ofs(t i)5r (t i). Equation~1! is then expressed as

r ~ t i !5D (
n52`

`

sS ~2n21!D

2 D sin$2p f c@ t i2~2n21!D/2#%

p@ t i2~2n21!D/2#
.

~2a!

Equation~2a! yields the exact solutions for all the elemen
in $s(k)% if and only if $r (t i)% has an infinite number o
elements, and does not have quantization errors.

Let $t i8%, $t i9%, and $t i% be the respective SC’s@with re-
spect to a commonr (t)# of the band-limited signalss1(t),
s2(t), and s(t). Equation ~2a! can be used to obtain th
following equally sampled representations:$s1(k)%, $s2(k)%,
and$s(k)% from $r (t i8)%, $r (t i9)%, and$r (t i)%, respectively.

If s(t)5s1(t)1s2(t), thens(k)5s1(k)1s2(k). Thus the
same$s(k)% is obtained from Eq.~2a! using$r (t i)%, or as a
sum of$s1(k)% and$s2(k)%. This property strictly holds only
if $r (t i8)%, $r (t i9)%, and$r (t i)% all have infinite elements an
are not affected by quantization errors.

In practice, only a finite number 2M of SC’s is obtained
and the convolution process in Eq.~2a! is truncated to

r ~ t i !5D (
n51

2M

sS ~2n21!D

2 D sin$2p f c@ t i2~2n21!D/2#%

p@ t i2~2n21!D/2#
.

~2b!

Equation ~2b! provides a set of 2M equations in 2M un-
knowns. Solving for the 2M unknowns using the LU De
-

s

composition technique@20# would involve (1/3)(2M )3

1(2M )2 computational operations.
Furthermore, the SC’s can be located only with finite a

curacy, which leads to quantization errors in our represe
tion of $s(t i)% by $r (t i)% @1–3#. In this paper, we investigate
numerically how the quantization errors and the use o
finite 2M value, affects the accuracy of the calculateds(k)
values.

It has been shown recently that when 2M is finite, the
exact sinc interpolation in Eq.~1! may be replaced by
@21,22#

r ~ t i !5 (
n51

2M

sS ~2n21!D

2 D

3

sinH 2p f cF t i2
~2n21!D

2 G J
2M sinH 1

2M
2p f cF t i2

~2n21!D

2 G J . ~3!

We also examine the difference between using Eq.~2b! and
Eq. ~3!, in solving for the unknowns(k) values.

C. Quantization errors in sinusoid crossing sampling

An SC is located by subdividing eachD into N partitions
of sized5D/N, so thatT52MNd @1–3#. The SC location
in the i th intervalD i is given byt i5( i 21)Nd1pid, where
pi is the partition location@0<pi<(N21)# within D i where
s(t)5r (t).

In a real SC detector@3#, the smallest possibled value is
given by the response time, which is always finite. In n
merical experiments, thed value is also finite becauseD
cannot be subdivided into an infinite number of partition
Thus, an uncertainty exists in the measured location of
intersection betweens(t) andr (t) within the i th intervalD i .
This uncertainty gives rise to a quantization errorE(t i) in
our representation ofs(t i) by r (t i) @3#.

In the first-order approximation, the measured value
s(t i) is represented byr (t i), according to s(t i)5r (t i)
6E(t i), where E(t i)5(1/2)u@]r (t)/]t#dtu, evaluated att
5t i . By noting thatdt5d, f r51/2D51/2Nd, we obtain
E(t i)5(Ap/2N)usin(pti /Nd)u, where t i5( i 21)Nd1pid.
Note thatE(t i) becomes infinitely small whenN is made
infinitely large.

The largest possible value for the error isEmax5Ap/2N,
which occurs att i locations wherer (t)50. Thus, r (t i)’s
representings(t) values that are near zero are the most in
curate. On the other hand,r (t i)’s representings(t) values
that are near the reference amplitudeA are least affected by
quantization errors.

For given values of the SC sampling parameters~A, N, T,
f r , and d!, the E(t i) value varies from one intervalD to
another according to how thes(t) value changes within thes
sampling intervals. For example, the$r (t i)% representing the
dc signals(t)5A, contain the least amount of quantizatio
errors because all the SC’s occur at locations wherer (t)
5A. On the other hand, the$r (t i)% representing the dc signa
s(t)50, is the most inaccurate because the SC’s occu
locations wherer (t)50. If s(t) is a sinusoid of frequency
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PRE 58 6761DIRECT SIGNAL RECOVERY FROM THRESHOLD CROSSINGS
f s , we expect the ill effects of the quantization errors
exhibit the periodicity off s .

III. NUMERICAL EXPERIMENTS

A. Sinusoid test signals

We first evaluate the performance of our interpolati
technique to sinusoid input signals of the forms(t)
5Ascos(2pfst1w). Numerous values are considered for t
frequencyf s , amplitudeAs , and phasew. Sinusoids are suit-
able test signals because any band-limited periodic func
can be expressed as a linear superposition of weighted s
soids of appropriate frequencies and phases. They also
mit an easy analysis of the effects of quantization errors
$s(k)%.

Figure 1~a! plots the percentage errorP(k)5100u@st(k)
2sc(k)#/st(k)u, where$st(k)% and$sc(k)% represent the true
and calculated equally sampled values ofs(t), respectively.
The P(k) plots compare the accuracy of$sc(k)% when it is
obtained using Eq.~2b! ~open circles!, and Eq.~3! ~closed
circles! for s(t)52.45 cos(2p16t), r (t)52.5 cos(2p256t),
T51, 2M5512, N51000, andd5T/2MN51.95331026

@23#. The SC’s are located at an accuracy of 1 in 1000 wit
eachD.

The largest quantization error possible isEmax5Ap/2N
'0.004, and they occur in the correspondingr (t i) represen-

FIG. 1. Percentage errorP vs i plots when$s(k)% is recovered
using Eq.~2b! ~open circles! and Eq.~3! ~closed circles! for ~a! T
52MD, ~b! extended T5(2M110)D, and ~c! cubic spline
interpolation ~squares! with T52MD. Parameters used ar
k5(2i 21)(D/2), s(t)51.0 cos(2p16t), r (t)52.5 cos(2p256t),
D51/512, 2M5512, andN51000.
n
u-
er-
n

n

tations ofs(t) values that are equal and near to zero. P
centage errors are at their minimum att i locations where
s(t i)5As'A. Although E(t i)5Emin'0, at all these posi-
tions, their correspondingP(k) values are not. The accurac
of the computeds(k) value inD i is affected primarily by the
quantization error found in its correspondingr (t i) value, but
it is also affected partly by the errors that are incurred in
neighboring sampling intervals.

The P(k) values~circles! produced by Eq.~2b! are about
an order of magnitude less than the ones~solid circles! pro-
duced by Eq.~3!. As predicted in our error analysis, theP(k)
plots exhibit the periodicity ofs(t)—theP values are larges
~at about 10%! at t5k/512, for k58,24,36, . . . , where
s(t)50.

TheP values are exceptionally large~.10%! at the edges
of the data series due to truncation errors that happen wh
convolution integral is implemented with only a finite num
ber of data points. To minimize the unwanted ringings at
two edges of$sc(k)%, we sampleds(t) using an extended
sampling period of T5(2M1k)D, instead of just T
52MD, wherek is an even number that is chosen~1! to
reduce bothP(k50) andP(k5511) to less than 10%, an
~2! to setP(k50)'P(k58)'¯'P(k5511).

We found thatk510 is the least number of additiona
data points that could satisfy our criterion for at least E
~2b! or Eq. ~3!. The extended sequence$r (t i)% with (2M
110) elements is utilized to solve for the (2M110) un-
known s(k) values. The 2M s(k) values that are used fo
comparison are then obtained by truncating$sc(k)%—five
points on each side. Figure 1~b! illustrates that the techniqu
is effective in reducing the large errors appearing at the e
of the sc(k) sequence. The technique has also made thP
values produced by Eq.~2b! ~open circles! and Eq. ~3!
~closed circles! comparable with each other. It has also r
duced theP(k) values especially in the middle region of th
sc(k) sequence.

Figure 1~c! shows theP(k) plot for $sc(k)% when it is
obtained from$r (t i)% using the cubic-spline~CS! interpola-
tion ~squares!, which is one of the most widely used interpo
lation methods@20#. The CS interpolation is fast~complexity
of order 2M ) and guarantees the global smoothness in
interpolation function up to the first derivative and continu
up to the second derivative. Its correspondingP(k) plot,
however, indicates that it is far inferior to the interpolatio
methods based on either Eq.~2b! or ~3!. It is not able to yield
sufficiently accuratesc(k) values from$r (t i)%.

We now examine the performance of the interpolati
procedure as a function of frequencyf s , phasew, and am-
plitude As . Figure 2 shows the normalized mean-squa
error « versusf s plots produced by the four recovery tec
niques that we have been considering. The parame
used are s(t)51.0 cos(2pfst), r (t)52.5 cos(2p256t),
2MD51, 2M5512, N51000, andk510. The normalized
mean-squared error « is defined as «5(k@sc(k)
2st(k)#2/(kst

2(k).
The CS interpolation~open squares! yielded a $sc(k)%

with an « that increases very rapidly with thef s value. The
behavior of the« plot that it produced is worse than the on
generated using the ‘‘sample-and-hold’’~SH! method
~closed squares!, where the$sc(k)% is derived by simply us-
ing the approximation$sc(k)%>$r (t i)%.
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The $sc(k)% produced by either Eq.~2b! ~open circles! or
Eq. ~3! ~closed circles! exhibits a significantly lower« value
that is also quite insensitive tof s within in the range 0< f s
<23250.9f r . The « plots correspond to$s(k)% ’s that are
obtained using the extended-T approach (k510). The final
sequence$sc(k)% used to compute a particular« is obtained
by dropping 5 points on each end of the calculated 5
elementsc(k) sequence.

The« values produced by both Eqs.~2b! and~3!, increase
abruptly when thef s value approachesf s52565 f r . At f s
5256, the two plots yield« values that are of the same ord
of magnitude as that shown by the SH plot.

Figure 3 shows the« versus phasew ~in degrees! plots
for the case of s(t)51.0 cos(2p16t1w), r (t)52.5
cos(2p 256t), k510, 2M5512, and N51000. All plots
show that the« value has no phase dependence. Results

FIG. 2. Normalized mean-squared error« vs f s plot using Eq.
~2b! ~circles!, Eq. ~3! ~closed circles!, cubic spline interpolation
~squares!, sample-and-hold ~closed squares! for s(t)
51.0 cos(2pfst), wherer (t)52.5 cos(2p256t), 2M5512, k510,
andN51000.

FIG. 3. Normalized mean-squared error« vs phasew plot using
Eq. ~2b! ~open circles!, Eq. ~3! ~closed circles!, cubic spline inter-
polation ~squares!, sample-and-hold~closed squares! for s(t)
51.0 cos(2p16t1w), where r (t)52.5 cos(2p256t), D51/512,
2M5512,k510, andN51000.
-

so

show that Eq.~2b! ~open circles! and Eq.~3! ~closed circles!
produce better results than the CS~squares! and the SH
~closed squares! methods. Figures 2 and 3 illustrate that the«
produced by the extended versions of either Eqs.~2b! and~3!
does not vary significantly withf s and w respectively, at
least for 0, f s,0.9f r and 0,w,p.

Figure 4 shows the« vs (As /A) plots for the case of
s(t)5Ascos(2p16t), r (t)5A cos(2p256t), A52.5, k510,
2M5512, andN51000. In all the interpolation methods, th
« value is always highest atAs /A values near zero where th
denominators@representing the trues(t) values# in the cor-
responding« expressions take on very small values.

The recovery performance of both Eq.~2b! ~open circles!
and Eq.~3! ~closed circles! improves asAs approachesA,
where the number of SC’s (out of 2M5512) that occur at
locations closer to wherer (t)5A also increases. At these S
locations, the quantization errors are smaller.

The performance of CS interpolation~squares! is not as
good and does not vary very much with the (As /A) value.
On the other hand, the SH method~closed squares! is best at
As /A'0.3. It exhibits a performance that deteriorates ex
nentially with (As /A) for (As /A).0.3.

In a real SC detector@3#, the smallest possible size ford
cannot be smaller than the effective circuit responsedc .
There is an invariant quantitydc5T/2MN, which leads to a
tradeoff between the accuracy in which we can locate an
within D5Nd5T/2M , and the value of the cutoff frequenc
f r5M /T.

For a fixedT, the use of a fasterf r ~done by increasingM!
necessarily reduces the possible numberN of partitions that
can be fitted withinD. On the other hand, increasingN to
improve the location accuracy necessarily reduces theM
value. We investigate whether an optimal combination ex
between the values ofN andM for given values ofT andd.

B. Multifrequency signal

Figure 5~a! plots the« versusu plots obtained for the
band-limited (W/2'16) signal s(t)5cos200(2t20.25)

FIG. 4. Normalized mean-squared error« vs (As /A) plots using
Eq. ~2b! ~circles!, Eq. ~3! ~closed circles!, cubic spline interpolation
~squares!, sample-and-hold~closed squares! for the case ofs(t)
5Ascos(2p16t), where r (t)5A cos(2p256t), A52.5, D51/512,
2M5512,k510, andN51000.
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FIG. 5. ~a! Normalized mean-squared error« vs q plots using Eq.~2b! ~open circles!, Eq. ~3! ~closed circles!, cubic spline interpolation
~squares!, sample-and-hold~closed squares! where 2M52u, N52p, T52MNd51, d52220, s(t)5cos200(2t20.25)1cos200(2t10.25),
and r (t)52.5 cos(2pMt), ~b! s(t) vs t plot, and~c! modulus spectrumuS( f )u of s(t). The « is minimum near 2M525 or N5215. The
results produced by Eqs.~2b! and ~3! are essentially identical~circles and closed circles superimposed on each other!.
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1cos200(2t10.25), where 2M52u, N52p, 2MNd51, d
52220, k510, f r51/2D, and r (t)52.5 cos(2pfrt)
52.5 cos(2pMt). The functions(t) is illustrated in Fig. 5~b!.
Its corresponding modulus Fourier spectrumuS( f )u is shown
in Fig. 5~c!. The inset plot shows an expanded version
uS( f )u.

The « plots corresponding to Eq.~2b! ~open circles! and
Eq. ~3! ~closed circles!, exhibit a minimum value of aroun
1026, at u55, which is the case whens(t) is sampled using
f r5M /T5245W/2(N5215). The SC’s are located with a
accuracy of 1 in 215532 768, within each intervalD.

The interpolation method yields accurate results fo
multifrequency signal particularly if the SC sampling is do
with f r5W/2. A priori knowledge of the bandwidth ofs(t),
therefore, is an important piece of information that can
utilized to optimize the performance of the method.

For values of 2M.25, the ill effects of quantization er
rors dominate in the interpolation procedure and« increases
rapidly with increasing 2M value. For 2M,25, s(t) is un-
dersampled and the effect of aliasing is the main contrib
to the« increase.

The P(k) plot ~not shown! of the $s(k)% that has been
obtained via Eq. ~2b! and with u55 ( f r5M /T524

5W/2, N5215) supports the prediction of our error anal
f

a

e

r

sis. The P(k) values are lowest in regions aroundt5
60.125, wheres(t) is maximum @see Fig. 5~b!#, and are
largest in regions arounds(t)50.

It is also interesting to note that the performance of
SH technique~closed squares! keeps improving with increas
ing u since the« plot decreases withu. The decrease contin
ues until the sampling intervalD5T/2M522u becomes
equal tod itself, which happens atu520.

To complete our study, we compare the performance
the recovery procedure with the results that are obtai
from a q-bit AD converter that is used to samples(t) at the
same value ofD. For a q-bit ~bipolar! AD converter, the
quantization errorEAD is independent of the amplitude o
s(t) and it is given byEAD52A/2q, where 6A are the
power supply voltages.

Figure 6 presents the« versusq plot of the q-bit AD
converter for the case wheres(t)5cos200(2t20.25)
1cos200(2t10.25), A562.5, T51, and 2M532. The «
value decreases exponentially with the bit numberq of the
AD converter. A comparison with Fig. 5~a! reveals that the
application of the recovery method to SC’s that are obtain
with 2M532 andN5215 will yield results that are equiva
lent to those obtained using a 13-bit AD converter.
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IV. COMPUTATIONAL COMPLEXITY

Besides reducing the processing time, less complexit
desired in a recovery algorithm to minimize the accumu
tion of the quantization errors into large rounding-off erro
@17#. The spectral-based algorithm@1,2# previously used to
calculate the 2M Fourier coefficients$c(m)% from $t i%, has a
computational complexity of order (2M )2. The recovery of
$s(k)% by inverse Fourier transforming$c(m)% introduces an
additional computational cost of (2M )ln(2M). Thus the total
cost of recovering $s(k)% from $t i% is (2M )2

1(2M )ln(2M).
The cost of calculating$s(k)% from $t i% via Eq. ~2b! or

Eq. ~3!, is of order (2M )3 if done using the LU decomposi
tion algorithm @20#. Cubic-spline interpolation on the othe
hand, has a complexity of order (2M ). The sample-and-hold
~SH! method has a constant computational overhead cost
to the substitution that we perform into the reference fu
tion. Both the CS and SH methods, however, were found
be inferior against those that use either Eq.~2b! or Eq. ~3!.

Interpolation using higher-order spline~HOS! functions
does not necessarily yield better results. The HOS interp
tion normally needs a higher density of data points within

FIG. 6. NMSE vsq whereq is the bit number of the AD con-
verter. Test signal: s(t)5cos200(2t20.25)1cos200(2t10.25),
whereA562.5, T51, 2M532, andD51/32.
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region of concern. It also requires a higher degree of co
nuity. If the data points used are distant from the point
interest, the resulting higher-order polynomial tends to os
late from the true value@20#. Adding more points close to the
desired point usually helps, but this implies the use of fin
sampling, which may not be available.

V. CONCLUSION

An approach has been presented for determining
equally sampled amplitude values$s(k)% of s(t) directly
from its SC locations$t i%. It is applicable to any band
limited continuous-time signals(t) with highest frequency
W/2, that is, SC sampled using a reference frequencyf r
>W/2, and a reference amplitudeA.us(t)u for all t values.

The approach that makes use of the ideal interpola
formula is compared with other more common recove
methods. Numerical results indicate that the propo
method is reliable and practical to implement. The equa
sampled values(k) is solved inversely from the convolutio
sum given in Eqs.~2b! or ~3!, and the accuracy of the resu
is affected by the quantization errors that exist in each of
sampling intervalsD within the sampling periodT.

The robustness of the calculateds(k) values to rounding-
off errors depends on the complexity of the inversion alg
rithm being used to solve Eq.~2b! or ~3!. Thus, a worthwhile
goal is to find an algorithm for implementing Eq.~2b! or ~3!,
which is less complex than the current one, which is of or
(2M )3.

More efficient computation of$s(k)% can be also
achieved if the correct inverse relation to Eq.~2b! or ~3!
could be found that expresses thes(k) value as a~convolu-
tion! sum of the 2M r (t i) values. Even the direct solution o
such an inverse relation would involve a computational co
plexity that is of order (2M )2.
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