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Direct signal recovery from threshold crossings
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We present a method for directly obtaining thil 2qually sampled amplitude values of the analog input
signal s(t) from the 2V locations{t;} where it intersects with a reference sigmét) =A cos(2rf,t). Until
now, high-accuracy signal recovery in sinusoid-crossing sampling had been achieved only indirectly using
spectral methods. The recovery requirements(arés(t)| <A and(2) W=2 f, whereW is the bandwidth of
s(t). The recovery method is evaluated as a function of the accuracy in which the crossings are located, and
the sampling period =2MA, whereA=1/2f, . Its performance is also compared with other direct interpo-
lation schemed.S1063-651X98)11610-0

PACS numbgs): 07.05.Kf, 02.60.Gf

[. INTRODUCTION Hopfield[8] has used a sinusoid reference signal to model
the delay in the firing of an action potential in response to a
Previous schemes for accurately recovering a bandparticular input stimulus valugphase coding Experimental
limited signals(t) from its sinusoid-crossingSC) locations ~ €vidence has been found regarding the existence of such os-
{t;} have been done only indirectly using spectral methog&illatory reference patterns in the hippocampal place cells in

. . rats[12] and electric fisj13].
51_,2].“Thfe Fou?er cgmpquegtgc(m)}zare flrs;[ ca_lcull?/lted The ability to recover accurately th&t) value at any
irectly from {t} wherei=1,2,....M, and m=-M, 4ot ithin the sampling period, from its data represen-

—M+1,... M. Equally sampled amplitude valugs(k)}  tation of unequally samples{t) values, is also important in
of s(t) are then recovered by inverse Fourier transformmgbeomgy' population biology, and ecosystem sciefecg., in
{c(m)}, wherek=(2i—1)(A/2) is the midpoint of théth  earthquake monitorinffL4], and population and disease cod-
sampling intervalp; . ing [15]), where amplitude measurements at equal time in-
Threshold sampling is attractive because it can be impletervals are difficult to implement. Although other direct in-
mented with a single-comparator circuit, which in essence i¢erpolation schemes, such as polynomial curve-fitting and
simply a one-bit analog-to-digitdAD) converter with only ~ cubic-spline interpolation, may also be applied to approxi-
two (2%) possible output states—the high and low stégls ~Mateis(k)} from {r(t;)}, the results may be highly inaccu-

The main challenge in threshold sampling is in recoveringrate depending on the behavior sik).

the correct analytic values aft) from the locationdt;} of Il. THEORY
its intersections with the reference sigmét). S _ _
This paper demonstrates a method for calculafis(d)} A. Sinusoid-crossing sampling

directly from{t;}. This capability is important in signal pro- The SC locations{t;} are solutions tos(t)—r(t)=0,
cessing because many integral and differential equations aweherer (t)=A cos(2rf,t). The seft;} contains complete in-
solved numerically using equally sampled sets of data valueformation abouts(t) provided that it is obtained usirid.6]:
[4]. The recovery method is suitable to signals with no mean{1) A>|s(t)| for all t values, and?2) f,=W/2, which is the
ingful Fourier transformge.g., noise and stochastic signals highest frequency o§(t). In such conditions, an SC exists
[5]) where the spectral-based method is inapplicable. within each intervalA=1/(2f,), and SC sampling satisfies
Direct signal recovery is also relevant in our quest to unthe Nyquist sampling criterion for band-limited continuous-
derstand the nature of information coding and decoding iime signals with highest frequendy/2 (signal bandwidth is
biological systems which can utilize threshold sampling todenoted byw).
encode an external stimulus. The time variations in the input We have previously shown that the Fourier spectrum of
stimulus value are encoded either as changes in the neurors(lt) can be derived accurately froffy} for the practical case
firing rate (amplitude-to-frequency conversipor as varia- where the number 2 of t; is large[2]. When 2V is large
tions in the delay time that an action potential generates witlf2M >32), the composite sign@b(t)—r(t)] cannot be re-
respect to some reference timgtemporal coding constructed simply as a product series of itd 200ts, be-
[6—-11. In both coding schemes, there has been no cleatause of the ill effects of the rounding-off errof47].
experimental evidence that the threshold representation mugqually sampled amplitude valuds(k)} of s(t) may be
first pass through Fourier domain decomposition before ambtained by inverse transforming the Fourier spectrum,
amplitude representation of the input stimulus is generatedwherek= (2i —1)A/2 [1].
In this work, we show a method for accurately deriving
{s(k)} directly from {t;} without the need to calculate first
*Author to whom correspondence should be addressed. FAXfor the Fourier spectrum. It makes use of the Nyquist sam-
+632-920 5474. Electronic address: csaloma@nip.upd.edu.ph  pling theorem and the ideal interpolation form{ils3,19.

1063-651X/98/56)/67597)/$15.00 PRE 58 6759 © 1998 The American Physical Society



6760 MAY LIM AND CAESAR SALOMA PRE 58

From {t;} one can obtain a set of nonuniformly sampled composition technique[20] would involve (1/3)(M)3
amplitude representation @&ft) given by {s(t;)}={r(t;)}. +(2M)2 computational operations.

The {r(t;)} contains one sampled value sft) within each Furthermore, the SC’s can be located only with finite ac-
A, because an SC exists within eashof the sampling pe- curacy, which leads to quantization errors in our representa-
riod T=2MA. tion of {s(t;)} by {r(t;)} [1-3]. In this paper, we investigate
numerically how the quantization errors and the use of a
B. The ideal interpolation formula finite 2M value, affects the accuracy of the calculaséi))
values.

The Nyquist sampling theorem states tias,19 any It has been shown recently that wheM 2is finite, the

band-limited continuous functiors(t) with highest fre- L ; :
guencyW/2, can be uniquely recovered frofs(k)} if it is Ee;f(;tzsmc interpolation in Eq(1) may be replaced by

obtained using a sampling intervaks 1A\V.

The recovery is achieved using the ideal interpolation for- 2M
mula[19], which permits the calculation of the amplitude of F(t)= 2 s( (2n— 1)A)
s(t) at any arbitrary time (within T), from {s(k)}: = 2
* _ i _ _ 2n—1)A
C0oa S S((Zn 1)A> sinf2f [t—(2n—1)A/2]} Sm[zﬂc{ti_ ( . ) “
n=w 2 7[t—(2n—1)A/2] v
(1) (2n—1)A

ti—

2M

)
>

2M sin(i 2nf,
Equation(1) yields an exact solution fog(t) if and only if

(1) an infinite number ok(k) terms are used in the expan-
sion, and(2) no quantization errors are found §8(k)}.

For our case, we have a data $stt;)}={r(t;)}, repre-
senting known values o$(t) at locations{t;} where s(t)
=r(t). The{r(t;)} contains a representative valuesff) in C. Quantization errors in sinusoid crossing sampling
each of theA's of the sampling period, which implies that  An SC s located by subdividing eachinto N partitions
{r(tj)} contains complete information abos(t) that could 5 gjze 5= A/N, so thatT=2MNé [1-3]. The SC location
be used to solve fofs(k)}. in theith intervalA; is given byt;= (i —1)N&+ p; 8, where

The inverse problem of solving fdrs(k)} from {r(t;)} p; is the partition locatiof0<p;<(N—1)] within A; where
via Eq. (1) is well posed because the number of unknownss(t):r(t)_

We also examine the difference between using &) and
Eq. (3), in solving for the unknowrs(k) values.

and input data points are equal—for every unknos(k) In a real SC detectdi3], the smallest possiblé value is
value in a given interval; ,.there is & corresponding known given by the response time, which is always finite. In nu-
value ofs(t;) =r(t;). Equation(1) is then expressed as merical experiments, thé value is also finite becaus&

30 ) cannot be subdivided into an infinite number of partitions.

()= S S((Zn—l)A) S'”{Zﬁfc[ti_(zn_l)A/Z]}. Thus, an uncertainty exists in the measured location of the
! neZe 2 7[t;—(2n—1)A/2] intersection betwees(t) andr(t) within theith intervalA, .
(2899  This uncertainty gives rise to a quantization erk{t;) in

) ] . our representation af(t;) by r(t;) [3].

Equation(2a) yields the exact solutions for all the elements | the first-order approximation, the measured value of
in {s(k)} if and only if {r(t;)} has an infinite number of gt.) is represented by (t;), according tos(t;)=r(t;)
elements, and does not have quantization errors. +E(t;), where E(t;)=(1/2)|[or(t)/t]dt|, evaluated at

Let {t{}, {t{}, and{t;} be the respective SClaith re-  —¢, By noting thatdt= 45, f,=1/2A=1/2N5, we obtain
spect to a common(t)] of the band-limited signals,(t), E(t;) = (Am/2N)|sin(#t;/N8)|, where t;=(i—1)N5+p;é.
sy(t), ands(t). Equation(2a) can be used to obtain the Note thatE(t;) becomes infinitely small whefl is made
following equally sampled representatiofisi(k)}, {s»(k)}, infinitely large.
and{s(k)} from {r(t{)}, {r(t{)}, and{r(t;)}, respectively. The largest possible value for the errorHg,,,=Am/2N,

If s(t)=s,(t) +s,(1), thens(k) =s;(k) +s,(k). Thus the  which occurs att; locations wherer (t)=0. Thus, r(t;)’s
same{s(k)} is obtained from Eq(2a) using{r(t;)}, oras a representing(t) values that are near zero are the most inac-
sum of{s;(k)} and{s,(k)}. This property strictly holds only curate. On the other hand(t;)’s representings(t) values
if {r(t/)}, {r(t])}, and{r(t;)} all have infinite elements and that are near the reference amplitull@re least affected by

are not affected by quantization errors. guantization errors.
In practice, only a finite numberM of SC’s is obtained For given values of the SC sampling parametésN, T,
and the convolution process in E@a) is truncated to f,, and ), the E(t;) value varies from one interval to
oM another according to how tts§t) value changes within these
(2n—=1)A\ sinf27f [t;—(2n—1)A/2]} sampling intervals. For example, the(t;)} representing the
r(ti):AnZl 5( 2 [ti—(2n—1)A/2] : dc signals(t) =A, contain the least amount of quantization

(2p)  errors because all the SC’s occur at locations wigtg
=A. On the other hand, thg(t;)} representing the dc signal
Equation(2b) provides a set of Bl equations in 21 un-  s(t)=0, is the most inaccurate because the SC’s occur at
knowns. Solving for the B1 unknowns using the LU De- locations wherea (t)=0. If s(t) is a sinusoid of frequency
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tations ofs(t) values that are equal and near to zero. Per-
centage errors are at their minimum tatlocations where
s(t;))=As~A. Although E(t;)=E,;,~0, at all these posi-
tions, their corresponding(k) values are not. The accuracy
of the computed(k) value inA; is affected primarily by the
quantization error found in its corresponding;) value, but
it is also affected partly by the errors that are incurred in the
neighboring sampling intervals.

The P(k) values(circles produced by Eq(2b) are about
an order of magnitude less than the of&aslid circles pro-
duced by Eq(3). As predicted in our error analysis, tRgk)
plots exhibit the periodicity o§(t)—the P values are largest
(at about 10% at t=k/512, for k=8,24,36..., where
s(t)=0.

TheP values are exceptionally large-10%) at the edges
of the data series due to truncation errors that happen when a
convolution integral is implemented with only a finite num-
ber of data points. To minimize the unwanted ringings at the
i two edges of{s.(k)}, we sampleds(t) using an extended
sampling period of T=(2M+«)A, instead of justT
=2MA, wherek is an even number that is choséh to

: reduce bothP(k=0) andP(k=511) to less than 10%, and

£ 104 u (2) to setP(k=0)~P(k=8)~---~P(k=511).
&k We found thatk=10 is the least number of additional
data points that could satisfy our criterion for at least Eq.
(2b) or Eq. (3). The extended sequenge(t;)} with (2M
+10) elements is utilized to solve for the N2+ 10) un-
known s(k) values. The ®1 s(k) values that are used for
comparison are then obtained by truncatifgy(k)}—five

FIG. 1. Percentage errdt vsi plots when{s(k)} is recovered  points on each side. Figuréhj illustrates that the technique
using Eq.(2b) (open circley and Eq.(3) (closed circlesfor () T js effective in reducing the large errors appearing at the edge
=2MA, (b) extended T=(2M+10)A, and (c) cubic spline  of the s (k) sequence. The technique has also madePthe
interpplation (squarep with T=2MA. Parameters used are yg|yes produced by Eq2b) (open circles and Eq. (3)
k=(2i—1)(A/2), s(t)=1.0cos(Z1&), r(t)=2.5cos(#25@), (closed circles comparable with each other. It has also re-
A=1/512, M =512, andN=1000. duced theP(k) values especially in the middle region of the

fs, we expect the ill effects of the quantization errors toSc(K) sequence.
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exhibit the periodicity off. Figure Xc) shows theP(k) plot for {s.(k)} when it is
obtained from{r (t;)} using the cubic-splinéC$S) interpola-
IIl. NUMERICAL EXPERIMENTS tion (squarel which is one of the most widely used interpo-
_ _ _ lation method$20]. The CS interpolation is fagtomplexity
A. Sinusoid test signals of order 2V) and guarantees the global smoothness in the

We first evaluate the performance of our interpolationinterpolation function up to the first derivative and continuity
technique to sinusoid input signals of the fors(t) up to the second derivative. Its correspondiR¢k) plot,
= A cos(2rfd+ ). Numerous values are considered for thehowever, indicates that it is far inferior to the interpolation
frequencyf, amplitudeA, and phase. Sinusoids are suit- methods based on either Egb) or (3). It is not able to yield
able test signals because any band-limited periodic functiogufficiently accurates;(k) values from{r(t;)}.
can be expressed as a linear superposition of weighted sinu- We now examine the performance of the interpolation
soids of appropriate frequencies and phases. They also pgrrocedure as a function of frequenty, phasee, and am-
mit an easy analysis of the effects of quantization errors oplitude As. Figure 2 shows the normalized mean-squared
{s(k)}. error ¢ versusf plots produced by the four recovery tech-
Figure Xa) plots the percentage erré(k)=100][s;(k) niques that we have been considering. The parameters
—s:(K)1/s(K)|, where{s;(k)} and{s(k)} represent the true used are s(t)=1.0cos(zfd), r(t)=2.5cos(2r256),
and calculated equally sampled valuess(tf), respectively. 2MA=1, 2M =512, N=1000, andx=10. The normalized
The P(k) plots compare the accuracy {g.(k)} when itis mean-squared errore is defined as e=X[s.(k)
obtained using Eq(2b) (open circley and Eq.(3) (closed  —s;(k)1%/=,s2(k).
circles for s(t)=2.45 cos(zrl6t), r(t)=2.5 cos(zr256), The CS interpolation(open squargsyielded a{s.(k)}
T=1, 2M=512, N=1000, ands=T/2MN=1.953<10 ®  with an e that increases very rapidly with tHg value. The
[23]. The SC's are located at an accuracy of 1 in 1000 withinbehavior of thes plot that it produced is worse than the one
eachA. generated using the “sample-and-hold(SH) method
The largest quantization error possible Es,,,=An/2N (closed squargswhere the{s.(k)} is derived by simply us-
~0.004, and they occur in the correspondirf}) represen- ing the approximatiods.(k)}={r(t;)}.
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FIG. 2. Normalized mean-squared ergows f plot using Eq.
(2b) (circles, Eqg. (3) (closed circles cubic spline interpolation
(squares  sample-and-hold (closed squargs for  s(t)
=1.0 cos(arfd), wherer(t)=2.5 cos(225@), 2M =512, k=10,
andN=1000.

The{s.(k)} produced by either Eq2b) (open circley or
Eq. (3) (closed circlesexhibits a significantly lowee value
that is also quite insensitive tiy within in the range 6 f
<232=0.9f,. The ¢ plots correspond tds(k)}'s that are
obtained using the extendddapproach £=10). The final
sequencds,(k)} used to compute a particularis obtained
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FIG. 4. Normalized mean-squared ersovs (As/A) plots using
Eq. (2b) (circles, Eqg. (3) (closed circle} cubic spline interpolation
(squares sample-and-holdclosed squargsfor the case ofs(t)
=A.cos(2716t), wherer(t)=A cos(2725), A=2.5, A=1/512,
2M =512, k=10, andN=1000.

show that Eq(2b) (open circlesand Eq.(3) (closed circles
produce better results than the @Q&juares and the SH
(closed squargsnethods. Figures 2 and 3 illustrate that the
produced by the extended versions of either E2f9. and(3)
does not vary significantly wittfg and ¢ respectively, at

by dropping 5 points on each end of the calculated 522!€ast for 0<f;<0.9f, and O<e<.

elements.(k) sequence.
The e values produced by both Eq2b) and(3), increase
abruptly when thefg value approachef,=256=f,. At fg

Figure 4 shows the vs (A;/A) plots for the case of
s(t)=Ascos(2rl6t), r(t)=A cos(2r25@), A=2.5, k=10,
2M =512, andN=1000. In all the interpolation methods, the

=256, the two plots yield values that are of the same order € value is always highest &;/A values near zero where the

of magnitude as that shown by the SH plot.

Figure 3 shows the versus phase (in degrees plots
for the case of s(t)=1.0cos(Zl6t+¢), r(t)=25
cos(2r25@), k=10, 2M =512, andN=1000. All plots

denominatorgrepresenting the trus(t) valueq in the cor-

respondings expressions take on very small values.
The recovery performance of both EQb) (open circleg

and Eq.(3) (closed circles improves asA; approaches,

show that the: value has no phase dependence. Results alsghere the number of SC’s (out ofM2=512) that occur at

0.1 7
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FIG. 3. Normalized mean-squared ereovs phasep plot using
Eq. (2b) (open circleg Eq. (3) (closed circle cubic spline inter-
polation (squares sample-and-hold(closed squargsfor s(t)
=1.0 cos(Zr16t+ ¢), where r(t)=2.5 cos(z256), A=1/512,
2M =512, k=10, andN=1000.

locations closer to wheng(t) = A also increases. At these SC
locations, the quantization errors are smaller.

The performance of CS interpolatidequarey is not as
good and does not vary very much with th&g(A) value.

On the other hand, the SH meth@osed squargss best at
As/A~0.3. It exhibits a performance that deteriorates expo-
nentially with (Ag/A) for (As/A)>0.3.

In a real SC detectd3], the smallest possible size fér
cannot be smaller than the effective circuit respoidse
There is an invariant quantit§,=T/2MN, which leads to a
tradeoff between the accuracy in which we can locate an SC
within A=N§=T/2M, and the value of the cutoff frequency
f,=MIT.

For a fixedT, the use of a fastd, (done by increasiniy)
necessarily reduces the possible numidesf partitions that
can be fitted withinA. On the other hand, increasiig to
improve the location accuracy necessarily reduces tkle 2
value. We investigate whether an optimal combination exists
between the values & andM for given values ofl and é.

B. Multifrequency signal

Figure 5a) plots thee versusu plots obtained for the
band-limited W/2~16) signal s(t)=cosY2t—0.25)
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FIG. 5. () Normalized mean-squared errons q plots using Eq(2b) (open circleg Eq. (3) (closed circlel cubic spline interpolation
(squarel sample-and-holdclosed squar@svhere M =2Y, N=2P, T=2MNé§=1, 6=2"20, s(t) =cogY2t—0.25)+ cogY 2t +0.25),
andr(t)=2.5 cos(zrMt), (b) s(t) vst plot, and(c) modulus spectrumS(f )| of s(t). The e is minimum near M =2% or N=25 The
results produced by Eq&2b) and (3) are essentially identicdtircles and closed circles superimposed on each pther

+cog%92t+0.25), where M=2", N=2P, 2MNs=1, § sis. The P(k) values are lowest in regions arouric
=272 k=10, f,=1/2A, and r(t)=2.5cos(zf,t) *0.125, wheres(t) is maximum[see Fig. )], and are
=2.5 cos(2rMt). The functions(t) is illustrated in Fig. ®).  largest in regions arouns{t) =0.

Its corresponding modulus Fourier spectr|8af)| is shown It is also interesting to note that the performance of the
in Fig. 5(c). The inset plot shows an expanded version ofSH techniqudclosed squarekeeps improving with increas-
[S(f)]. ing u since thes plot decreases with. The decrease contin-

The ¢ plots corresponding to Eq2b) (open circlesand  ues until the sampling intervah=T/2M=2"" becomes
Eq. (3) (closed circlel exhibit a minimum value of around equal tod itself, which happens at= 20.
10°°, atu=5, which is thles case whes(t) is sampled using  To complete our study, we compare the performance of
f=M/T=2"=W/2(N=27). The SC’s are located with an the recovery procedure with the results that are obtained
accuracy of 1 in 2°=32 768, within each interva. from ag-bit AD converter that is used to sampét) at the
The interpolation method yields accurate results for aggme value ofA. For ag-bit (bipolan AD converter, the
multifrequency signal particularly if the SC sampling is do”equantization erroiE . is independent of the amplitude of

with f,=W/2. A priori knowledge of the bandwidth &f{t), s(t) and it is given byE,p=2A/2% where +A are the
therefore, is an important piece of information that can be | It '
utilized to optimize the performance of the method POWET SUpply Vottages.
P P . o Figure 6 presents the versusq plot of the g-bit AD
For values of M>2°, the ill effects of quantization er-

— 00>t —
rors dominate in the interpolation procedure anithcreases CO”VS%EF; f%r ZstheA_CiS;5 v:_hierles(t);c;vsl’-_(szzt 'I(')HZS)
rapidly with increasing ®1 value. For M <25, s(t) is un- +CosT(2t+0.25), A=x25, T=1, an —oc. Ihee

dersampled and the effect of aliasing is the main contributoy@/Ue decreases exponentially with the bit numest the
to the e increase. AD converter. A comparison with Fig.(8 reveals that the

The P(K) plot (not shown of the {s(k)} that has been application of the recovery method to SC's that are obtained
obtained via Eq.(2b) and with u=5 (f,=M/T=2% With 2M =32 andN=2"° will yield results that are equiva-

=WI/2, N:le) Supports the prediction of our error ana|y_ lent to those obtained USing a 13-bit AD converter.
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100 W region of concern. It also requires a higher degree of conti-
101 ® nuity. If the data points used are distant from the point of
14 " - interest, the resulting higher-order polynomial tends to oscil-
0.1 = late from the true valug20]. Adding more points close to the
i " desired point usually helps, but this implies the use of finer
©w  0.00H - sampling, which may not be available.
- . u
0.00001- .. V. CONCLUSION
i " An approach has been presented for determining the
0.0000001 ' . equally sampled amplitude valuds(k)} of s(t) directly
§ = from its SC locations{t;}. It is applicable to any band-
0.00000000 +H—T—T—T—T—T—T—T—T '.O T .v — limited continuous-time signad(t) with highest frequency
FFFFFFF W/2, that is, SC sampled using a reference frequeficy
q =W/2, and a reference amplitude>|s(t)| for all t values.

FIG. 6. NMSE vsq whereq is the bit number of the AD con- The a_pproach that mgkes use of the ideal interpolation
verter. Test signal: s(t)=cog%%(2t—0.25)+ cog%%2t +0.25) formula is compared with other more common recovery

whereA=+25 T=1 2M =232, andA=1/32. methods. Numerical results indicate that the proposed
method is reliable and practical to implement. The equally
IV. COMPUTATIONAL COMPLEXITY sampled value(k) is solved inversely from the convolution

sum given in Egs(2b) or (3), and the accuracy of the result
Besides reducing the processing time, less complexity i$s affected by the quantization errors that exist in each of the
desired in a recovery algorithm to minimize the accumula-sampling intervals\ within the sampling period.
tion of the quantization errors into large rounding-off errors  The robustness of the calculatsfk) values to rounding-
[17]. The spectral-based algorithfth,2] previously used to off errors depends on the complexity of the inversion algo-
calculate the ®1 Fourier coefficientgc(m)} from{t;}, hasa rithm being used to solve E(b) or (3). Thus, a worthwhile
computational complexity of order (2)2. The recovery of goal is to find an algorithm for implementing E@b) or (3),
{s(k)} by inverse Fourier transforminig(m)} introduces an  which is less complex than the current one, which is of order
additional computational cost of {2)In(2M). Thus the total  (2M)3.
cost of recovering {s(k)} from {t} is (2M)2 More efficient computation of{s(k)} can be also
+(2M)In(2M). achieved if the correct inverse relation to E@b) or (3)
The cost of calculatings(k)} from {t;} via Eq. (2b) or  could be found that expresses t() value as gconvolu-
Eq. (3), is of order (M)? if done using the LU decomposi- tion) sum of the M r(t;) values. Even the direct solution of
tion algorithm[20]. Cubic-spline interpolation on the other such an inverse relation would involve a computational com-
hand, has a complexity of order ¥2). The sample-and-hold plexity that is of order (®)2.
(SH) method has a constant computational overhead cost due
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